Partial molar volume, surface area, and hydration changes for equilibrium unfolding and formation of aggregation transition state: high-pressure and cosolute studies on recombinant human IFN-gamma.

نویسندگان

  • J N Webb
  • S D Webb
  • J L Cleland
  • J F Carpenter
  • T W Randolph
چکیده

The equilibrium dissociation of recombinant human IFN-gamma was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was -209 +/- 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 +/- 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-gamma in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were -41 +/- 9 ml/mol of dimer and 3.5 +/- 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values approximately 4-fold larger for both transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase-Transformation of Gamma-Allumina to Alpha-Alumina as an Industrial Catalyst Support

The phase transformation of aluminum hydrates yields various forms of alumina (d, q, K) and eventually alpha-alumina. The decrease in the specific surface area of alumina upon heat treatment is due to changes in crystalline structure and hence a decrease in the porosity of the material, Although the conversion of gamma-alumina to alpha-structure takes place with a lowering in surface area and p...

متن کامل

Protein hydration and unfolding--insights from experimental partial specific volumes and unfolded protein models.

BACKGROUND The partial specific volume of a protein is an experimental quantity containing information about solute-solvent interactions and protein hydration. We use a hydration-shell model to partition the partial specific volume into an intrinsic volume occupied by the protein and a change in the volume occupied by the solvent resulting from the solvent interactions with the protein. We seek...

متن کامل

Putting the Piezolyte Hypothesis under Pressure.

A group of small molecules that stabilize proteins against high hydrostatic pressure has been classified as piezolytes, a subset of stabilizing cosolutes. This distinction would imply that piezolytes counteract the effects of high hydrostatic pressure through effects on the volumetric properties of the protein. The purpose of this study was to determine if cosolutes proposed to be piezolytes ha...

متن کامل

Pressure- and temperature-induced unfolding and aggregation of recombinant human interferon-gamma: a Fourier transform infrared spectroscopy study.

The effect of hydrostatic pressure on the secondary structure of recombinant human interferon-gamma (rhIFN-gamma) and its biologically inactive truncated form rhIFN-Delta C15 has been studied using Fourier-transform IR (FTIR) spectroscopy. In situ observation of the pressure-induced changes using the diamond anvil cell shows that the alpha-helical structure is mainly transformed into disordered...

متن کامل

Kinetics and energetics of assembly, nucleation, and growth of aggregates and fibrils for an amyloidogenic protein. Insights into transition states from pressure, temperature, and co-solute studies.

The transition states for prenucleation assembly, nucleation, and growth of aggregates and amyloid fibrils were investigated for a dimeric immunoglobulin light chain variable domain, employing pressure, temperature, and solutes as variables. Pressure-induced aggregation was nucleation-dependent and first-order in protein concentration and could be seeded. The insoluble aggregates were mixtures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 13  شماره 

صفحات  -

تاریخ انتشار 2001